産業用USBカメラ映像の色について(ホワイトバランス)

実物とカメラの色味が極端に異なるときは、ホワイトバランス補正が必要です。
ホワイトバランス補正とは光源の色味(色温度)による色の違いを補正して、実際の色に近付ける機能です。
例えば映像が光源=太陽光ではオレンジや黄色っぽく、光源=蛍光灯では緑や青緑っぽく写る事が多いのですが、この状態を補正します。
民生のデジタルカメラでは自動補正や日光配下・蛍光灯配下補正等のすでにプリセットされた機構で簡単に補正できるようになっていますが、産業用カメラではより厳密に、また様々な光源に対応できるような補正機構になっています。
 
●通常の補正方法

顕微鏡側のカメラの接続部がCマウントの場合、Cマウント部にも倍率があります。
1) 白い紙などを画像全体に写るようにする。

2) 明るさ/コントラスト/ゲインをリセットした状態にして、明るさをレンズの絞りで飽和しないように調節する。
明るさが飽和すると正しく補正できません。
できるだけ明るく、かつ明るさが飽和しないようにすることがベストですが、飽和しているかどうかわからない場合は少々暗めにすると良いでしょう。

3) カメラプロパティ等にある White Balance の One push ボタンをクリックする。

※ 蛍光灯下の場合は映像が明滅してうまく補正できないことがあります。
この場合は明滅が穏やかになるよう、一時的に Clock の値を下げてから補正して下さい。

 

 

●手動による補正方法
 
白い物を用意できない、暗い環境下でかつ非常に強いの光を撮影する等、通常の補正方法では意図した色にならない場合は手動で補正します。

1) カメラの設定を全てデフォルトに戻す。

2) 撮影する環境下でなるべく白っぽい物が多い景色を映す。
このとき、明るさをレンズの絞りで飽和しないように少々暗めに調節する。

3) カメラプロパティ等にある White Balance の One push ボタンをクリックする。
クリックして、色が大きく異なっていなければOKです。
全く色味が合わないときは、4)へ進んでください。

4) 撮影したい物を写し、カメラプロパティ等にある Red/Blue/Greenに関する値を 手動で調整して、実際の色味に近づける。

※ 蛍光灯下の場合は映像が明滅してうまく補正できないことがあります。
この場合は明滅が穏やかになるよう、一時的に Clock の値を下げてから補正して下さい。

 

 

 

 

マイクロスコープなんでも辞典

 

顕微鏡用カメラの視野と倍率の考え方(Cマウントの場合)

顕微鏡を裸眼で観察すると、視野は丸くなります。 (0.5mm刻みのガラススケールをテストサンプルにしています。)
 
これをカメラで撮影すると4:3等の長方形となり、見た目よりは拡大されて撮影されます。 また、カメラ接続部(リレーレンズ)の倍率、カメラの撮像素子サイズ、等でも視野が変わってしまいます。(組合せで赤色の視野にも青色の視野にもなります。) これをモニタ倍率で表現(計算)することもできます。
 

 

■カメラ接続部がCマウントの場合
顕微鏡側のカメラの接続部がCマウントの場合、Cマウント部にも倍率があります。
 
倍率計算は下記の通りです。
モニタ倍率 = 対物レンズの倍率 × Cマウントの倍率 × (モニタの対角長/カメラ撮像素子の対角長)
 

 

 
1/2.5インチのカメラ(カメラ撮像素子の対角7mm)、
19インチモニタ(対角470mm)、
Cマウント部(等倍)、
対物レンズ10倍
で確認しました。
 
<計算倍率> 
10倍 X 1倍 X (470mm/7mm)= 670倍
 
 
19インチモニタの水平方向の寸法が370mmなので、右の写真が画面一杯に広がったとすると

<実測倍率>
370/0.55mm=672倍 

となります。
計算倍率(モニタ上での倍率)と実測倍率が一致します。

視野を広げる場合は、Cマウントアダプタの倍率を下げる必要があります。

他社様のカタログを確認すると色々な倍率があるようです。

 
 

 

 

 

マイクロスコープなんでも辞典

 

実体顕微鏡の基本調整

実体顕微鏡は基本調整をすることにより、眼の疲労を抑えたり作業効率を上げることができます。
まず、適切な目の位置を確認します。
この目の位置のことをアイポイントといいます。
昔の顕微鏡はまつ毛が接眼レンズに触れるくらいに近づけていました。 今はメガネをかけたまま観察できるハイアイポイントタイプもあり様々です。

接眼レンズに下記のマークが入っていれば、ハイアイポイントタイプです。

 
 

 

1.視間調整(接眼レンズと目の幅を合わせます。)
双眼の顕微鏡を覗く場合、遠くをみるようにするのがコツです。
遠くを見るように意識しながら接眼レンズを覗き、両接眼レンズの幅を調整します。
両目で接眼レンズを覗き、視野が一つのきれいな円になったら調整完了です。
 

 

 2.視度調整
両眼ともに焦点が合うように、視度調整環を回して調整します。
 
(片眼視度調整タイプ)
 
(両眼視度調整タイプ)
 

 

3.ズーム調整
(1) ズームダイヤルを回して最少倍率にして焦点を合わせます。
(2) 次に、ズームダイヤルを回して最大倍率にして焦点を合わせます。
(3) 再度、低倍率に戻します。低倍率側で焦点が合っていれば調整完了です。
 

 

焦点が合っていない場合
片眼視度調整タイプは(1)と(2)の操作を繰り返します。
両眼視度調整タイプであれば(3)の段階で両眼で焦点が合うように視度調整環を回します。
その後(1)から(3)の操作を繰り返します。
 

 

 

 

マイクロスコープなんでも辞典

 

AI外観検査

AI(人工知能)を搭載したソフトウェア AI-Detectorを
日本・タイ・ベトナムの3か国で、同時発売いたします。

こちらのソフトはAIとチェスの人間のチャンピオンの対戦で
一般的にも広く知られた技術、
Deep Learning(深層学習)という学習方法を用いています。

人間や動物の脳神経回路を模した
ディープニューラルネットワークを用いて、
十分なデータ量があれば
人間の力なしに機械が自動的にデータから特徴を抽出してくれます。
 
例えば、製品上の傷を人の目でチェックしている場合、
その傷の写真を十分な量ソフトに与えてトレーニングさせると
その傷の自動検出が行えます。
 
今までの自動外観検査ソフトは、
人間が検査用に複雑な設定をソフト上で行い、
微調整に微調整を重ねて検査できる状態になりますが
こちらのAIソフトは画像を撮影すれば
あとはソフトが勝手に勉強してくれます。
 
必要なのはPC、グラフィックボード、ソフトウェアです。
無料デモ機のご用意もございます。お気軽にお問い合わせください。
 
 

 

 

 

USBマイクロスコープのメリット・デメリット

USBマイクロスコープはパソコンにUSBケーブルで接続して画面上に拡大表示させるマイクロスコープです。
メリットはパソコンで観察でき、その画像を簡単に保存できることです。
またソフトウェアを使って計測・焦点合成・二値化等の画像処理をはじめ様々なことが可能になります。
また弊社のUSBマイクロスコープに使用しているカメラはDirectshow対応のカメラなので他社のDirectshow対応のソフトウェアも使用可能です。
デメリットはUSBの通信速度に依存する為解像度に比例して表示速度が遅くなること。動画の撮影もできますが、コマ落ち等が発生するため不向きです。
 

 

弊社では各種USBマイクロスコープをご用意しております。
 

 

 

 

マイクロスコープなんでも辞典

 

内視鏡の光源

松電舎のボアスコープ用LED照明、ハンディ照明はM10、P=0.5の
各種ボアスコープ、ファイバースコープに取り付け可能です。

 


ボアスコープ用LED照明

ボアマイクロスコープ用 ハンディ照明(電池式)

 

 

 

松電舎のボアスコープ用光源はこちらから。
 

 

マイクロスコープなんでも辞典

 

UVCカメラとAIプログラム

AIプログラム開発の環境は
Python言語で記述するのが現在の主流となっております。

Pythonで産業用カメラを制御するには面倒事が多く
WEBカメラで採用されているUVC規格で
プログラムを組むことが多いのです。

簡単に言うと
「UVCカメラはAIプログラムとの親和性が良い」のです。

視野や明るさに応じてレンズが交換できる
産業用のCマウント規格のUVCカメラは
意外と手に入りにくい物となっておりますので
現在AIプログラム開発をされている方は
一度松電舎のUVCカメラをお試しください。

 

 

松電舎のUVCカメラはこちらから。
 

 

 
産業用カメラのことならなんでもおまかせ!松電舎運営、産業用カメラの学習サイトです。
松電舎が販売している産業用・工業用カメラ、USBカメラ、UVCカメラ、GigEカメラについての役立つ情報をご紹介します。
是非ご覧ください!
 

 

CマウントとCSマウント

Cマウントはねじを利用してカメラとレンズを固定するスクリューマウントです。

内径25.4mm(1インチ)、ネジピッチ0.794mm、フランジバック17.526mmがCマウントの規格です。

カメラの小型に伴い、Cマウント規格のフランジバックだけを5mm短くしたCSマウントというものもあります。
(口径とネジピッチは同じです。)

カメラによっては、CマウントにもCSマウントにも対応できるように5mm厚のリングを装着して、必要に応じて取り外しできるような構造になっているものもあります。

 

 

USBカメラでwarning C4996が出た時

Windows [2.0.4.6]の ICubeSDKSample_x32_x64_vs2010のプロジェクトで以下のワーニングが出ることが報告されています。

a) warning C4996: ‘MBCS_Support_Deprecated_In_MFC’: MBCS support in MFC is deprecated and may be removed in a future version of MFC.

stdafx.hの「#define VC_EXTRALEAN」の下あたりに以下の1行を追加することでワーニングを抑制できます。

#define NO_WARN_MBCS_MFC_DEPRECATION

b)warning C4996: ‘CWinApp::Enable3dControlsStatic’: CWinApp::Enable3dControlsStatic is no longer needed. You should remove this call.

このワーニングは「MFCの使用」を「スタティックライブラリで MFC を使用する」に設定しすると出ます。
Enable3dControlsStatic()関数は古い仕様で現在は必要ないので、
ICubeSDKSample.cpp の CICubeSDKSampleApp::InitInstance()にある以下の行をコメントアウトしてください。

Enable3dControlsStatic(); // Diese Funktion bei statischen MFC-Anbindungen aufrufen

 

 

その他にもUSBカメラについての技術的な情報を多数掲載しております

金属顕微鏡の珍しい使い方

金属顕微鏡で髪の毛のキューティクルも観察できます。
 

 

 
金属顕微鏡でも髪の毛のキューティクルを見ることが可能です。
ただし金属顕微鏡は本体サイズが203x255x421(H)mmと大きなものとなります。

 

 

マイクロスコープなんでも辞典

 

実体顕微鏡に透過照明を付ける方法

透過照明の無いベースに透過照明を後から取り付ける方法をご紹介します。
(ベース形状にある程度の条件があります。)
 
観察板(白黒板)のついている顕微鏡であれば・・・
 

 

観察板を外し
 

透過照明 RD-95T をベースの下に入れます。ケーブルは隙間から引き出します。
 

観察板の代わりにガラス板を取り付けます。
 

 

ガラス板と面発光照明を追加すると、簡易の透過照明スタンドとして使うことができます。
 

 

マイクロスコープなんでも辞典

 

ハイスピードカメラの解像度

松電舎のハイスピードカメラのラインナップをご紹介いたします。
 

 

型番 CHU30-C/B CHU130EX CHU530EX-B CH71EX
解像度 30万画素 130万画素 530万画素 30万画素
有効画素数 640×480(VGA) 1280×1024 2592×2048 640×480(VGA)
シャッタースピード(解像度) 最速1000コマ/秒
(640×360)
最速4000コマ/秒(112×80) 最速7500コマ/秒
(320×20)
最速120,000コマ/秒(640×12)
ハイスピードカメラがなんと248,000円!
 
 
 

 

USB3.0バスパワー動作で接続が簡単に!
 
 
 

 

高精細な530万画素のハイスピードカメラ
 
 
 

 

<CH71EX>
新型高感度センサを搭載したことで照明が厳しい環境下でも 鮮明な高速撮影可能に!
 
 
 

 

 

 

マイクロスコープなんでも辞典

 

照明の選定

照明ごとの映像の見え方の違いをご紹介いたします。
 

 

人間の眼で見た状態に近く一番自然に見えます。
 
 
 

 

反射物(金属等)を観察すると、条件によって白黒が反転します。
 
 
 

 

エッジが強く強調されます。
 
 
 

 

 

 

マイクロスコープなんでも辞典

 

最適なマシンビジョンレンズの選び方

撮影したい対象物の大きさから必要なレンズを計算で求めることができます。
この時に必要なのは、カメラの撮像素子のサイズ、対象物までの距離(W.D.)となります。
 

 

簡単に最適な固定焦点レンズが選定できるよう、CCTVレンズ計算機をご用意しました。
 
使用したいカメラと距離、視野範囲から最適なレンズを算出します。
 

 

 

 

マイクロスコープなんでも辞典

 

マイクロスコープの被写界深度

テレセントリックレンズのような精密測定用の特殊なレンズは除き、一般的なレンズにおいて完全に焦点の合っている点は1点です。
完全に焦点のあっている点の前後の焦点ボケの少ない範囲のことを被写界深度・焦点深度といいます。
どこまでが実用範囲かは個人の主観になってしまいます。
光路を絞るとこのボケていく度合をゆるやかにすることができます。
但し、絞ることにより、撮像が暗くなるので、あまり倍率の高いレンズでは使えません。
 

 

 

 

この絞り付マイクロスコープで開放時と絞った時の画像を比較します。
(絞りを絞ると焦点深度が深くなります。)

 

<絞りを開放にした時>
<最大に絞った時>
 

 

 

 

マイクロスコープなんでも辞典

 

ボアスコープとファイバースコープの違い

内視鏡(エンドスコープ)は大きくわけて3つのタイプがあります。
 

 

1. ボアスコープ(硬性鏡)
先端部にロッドレンズが入っているタイプです。
 

 

2. ファイバースコープ
先端は光ファイバーとなります。
ファイバーが折れないレベルで中継部をフレキシブルに曲げることができ、ボアスコープ以上に細径にできます。

 

3. モニタ直結タイプ ボアスコープ(硬性鏡)
先端はレンズだけなのでφ0.7mm程度まで細径にできます。
ボアの部分だけみると映像は一番クリアです。

 

 

 

マイクロスコープなんでも辞典

 

ボアスコープの高温・耐熱対応について

耐熱ボアスコープは
150℃を超えると冷却装置が必要となり、完全なカスタム品となります。

松電舎では高熱120℃までは使用できる
冷却装置が不要な耐熱タイプのボアスコープがございます。

 

 

 

 

それ以上になると、別途冷却装置が必要となりますが、1800℃程度までは対応可能です。
1200℃まで対応できる水冷式タイプのボアスコープの特注実績はこちら
 

 

 

 

マイクロスコープなんでも辞典

 

産業用カメラのRaspberry pi対応について

ラズベリーパイにはカメラ用の端子も実装されていますが、
専用のカメラしか接続できず、
「満足な画質が得られない」「レンズが変えられない」
「ケーブルの延長が難しい」等の不満が見受けられます。

しかしラズベリーパイのOSは標準でUVCカメラも使えます。
※1 古いOSではバージョンアップが必要な場合があります。
UVCカメラドライバのセットアップが必要な場合があります。
 
特に130万画素タイプは市販の Webカメラにはない仕様になっています。

・グローバルシャッター ⇒ 移動物体の撮影に最適です
・モノクロ仕様     ⇒ カラーカメラよりも明るい、映像がシャープ

 

 

 

マイクロスコープなんでも辞典

 

実体顕微鏡の倍率の計算

顕微鏡の倍率は下記の式で計算します。

光学倍率=(対物レンズの倍率)×(接眼レンズの倍率)

となります。
顕微鏡の倍率=光学倍率となります。
(下写真の顕微鏡であれば、対物レンズの倍率 10倍 × 接眼レンズの倍率 10倍で光学倍率は100倍となります。)

 
 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 

顕微鏡で撮影する方法

顕微鏡で撮影するために接眼レンズ または JIS鏡筒部分に接続する顕微鏡用カメラをご紹介いたします。
 
1.顕微鏡用カメラ
 
 
通常、顕微鏡用カメラはケラレ(四隅の影)がでないように作られております。
ケラレがでないように余裕をみて設計しますが、その度合いはメーカーにより異なります。
但し、裸眼観察よりは確実に拡大されます。

顕微鏡用カメラのレンズは固定倍率の為、このままでは視野を変えることはできません。

 
松電舎の顕微鏡用カメラはこちらから
 
 

 

2.市販のビデオカメラとリレーレンズ
 
リレーレンズ リレーレンズ
 
市販のビデオカメラにリレーレンズを装着して観察しています。
市販のビデオカメラにはズーム機能があります。
このズーム機能を使い、視野を調整しました。
ケラレ(四隅の影)は発生しますが、視野を広くとることができます。(一番上の写真の黄枠)
 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 
 

マイクロスコープで深さ測定

もっとも簡単な方法はマイクロスコープとデジタルインジケーターを組み合わせて使用する方法です。
レンズはできるだけ被写界深度の浅いものを選びます。
上下させるアングルに微動調整機構が付いているスタンドだとより精度高く測定できます。

 

 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 
 

マイクロスコープでの無料テスト撮影

松電舎では無料のデモ機貸出を行っております。
お客様の現場で実機をお試しいただけます。
デモ機の貸出はこちらからお問い合わせください。

 

また事前にお客様の対象物を
本当に観察できるか、実際の検査に使えるか、
どの機種が最適か、撮影した画像に必要な情報が映るか、
など、デモ機を借りる前に一度試してほしいというリクエストにも
松電舎技術スタッフがお応えいたします。

 

お客様がご希望する画像をイメージ通りに撮影するため、
事前にどのような画像をご希望かをお聞きしております。
テスト依頼をご希望の方は、
弊社技術スタッフにお電話もしくはメールにてご連絡の上、
弊社までテストサンプルを数点お送りください。

松電舎技術スタッフ(松本 or 加藤 or 中山)
各会社様に合わせて個別にご提案をさせていただきます。

フリーダイヤル 0120-072-250 
TEL : 06-6364-3000
FAX : 06-6364-3311
E-mail:sds@shodensha-inc.co.jp

 

※無料テスト・サンプル撮影は随時行っておりますが、
状況によってはお時間をいただく場合がございます。ご了承くださいませ。

詳細はこちらから

 

 

マイクロスコープと実体顕微鏡の比較

マイクロスコープと実体顕微鏡の主な違いを表にまとめてみました。

 

  実体顕微鏡 マイクロスコープ
倍率 低倍率(最大100倍程度) 低倍率から高倍率まで対応
立体的観察
PCとの親和性
扱いやすさ

少しコツが必要

初心者でも簡単に扱える

主な用途

・立体物の観察

・加工作業

・組み込み作業

・外観検査

・正確な位置決め

・寸法測定

 

 

 

マイクロスコープなんでも辞典

 
 
 

 

実体顕微鏡の選び方

実体顕微鏡は、両目で対象物を覗いて”立体的に観察”出来る顕微鏡です。

一例ですが、「時計等の細かな製品の組立」や「歯科技工士の方が使用する実体顕微鏡」等、立体物の観察、検査等に使用されています。

 
松電舎では大きく分けて以下の顕微鏡をラインナップしております。
実体顕微鏡
実体顕微鏡とは対象物をそのまま観察でき、比較的立体的に観察できるタイプの顕微鏡です。 生物や植物の観察の他に、基板の検査などの工業的分野で広く使われています。 顕微鏡用カメラを取り付ければパソコンで画像処理も行なえます。
 

 

生物顕微鏡
主に生物学や医学の分野で用いられる顕微鏡。高倍率の観察が可能。 微生物などの観察だけでなく幅広い分野で使用可能。カメラ内蔵生物顕微鏡、三眼タイプ生物顕微鏡をラインナップ。
 

 

金属顕微鏡
金属表面の観察に適した顕微鏡。対物レンズ側から光を対象物にあてて反射光で観察する顕微鏡。
 

 

アーム式顕微鏡
スムーズ操作で作業効率アップ、高性能で低価格なアーム付実体顕微鏡、工業用顕微鏡アーム。歯科技工士、またジュエリーの加工用の顕微鏡としても最適です。
 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 

マイクロスコープの倍率と顕微鏡の倍率の違い

マイクロスコープと顕微鏡の倍率は「倍率の考え方」が異なり、同じものではありません。
 
<顕微鏡の倍率>
メーカーが異なっても倍率が同じであれば、同じ視野になります。これを絶対倍率と言います。(厳密には接眼レンズの視野数によって視野は変わります)

<マイクロスコープの倍率>
同じ倍率でもメーカーによって視野が異なります。これを相対倍率と言います。

 

■顕微鏡の倍率
顕微鏡の倍率は下記の式で計算します。
光学倍率=(対物レンズの倍率)×(接眼レンズの倍率)
 

 

■マイクロスコープの倍率
光学倍率は顕微鏡と同じです。
光学倍率=(対物レンズの倍率)×(レンズ本体の倍率)となります。

ここにモニタ倍率が入り、
総合倍率=モニタ倍率×光学倍率となります。

つまり、モニタサイズや撮像素子サイズが変われば、倍率も変わってしまうのです。
(各メーカーのカタログをみると、必ず「○○インチモニタ相当」等の表記があります。)

 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 
 

マイクロスコープで計測する方法

マニュアルで計測する方法をご紹介いたします。

1.マニュアルで寸法・角度を計測する方法
 ・・・高機能計測ソフトMeasurePRO  低価格58,000円(税抜)で計測できます。

 

 

<高機能計測ソフト MeasurePRO>

[2点間距離]
2点間距離を計測できます。

[3点角度]
3点指定で確定する角度を測定できます。

[4点角度]
4点指定で確定する角度を測定できます。

[円直径]
3円指定で確定する円の直径を測定します。

[2円間距離]
2円間の中心距離と直径と角度を計測します。

[垂線]
基準線からの垂線距離を計測します。

[面積]
多角形の面積を計測します。

 

 

自動的に計測する方法もございます。
詳細はお問い合わせください。
 

 

更に詳しい情報はこちらをご覧ください。

 

 

マイクロスコープなんでも辞典

 

マイクロスコープと実体顕微鏡の違い

マイクロスコープと実体顕微鏡の違いについてご紹介します。
マイクロスコープと実体顕微鏡にはそれぞれ、メリット、デメリットがあります。

 

■実体顕微鏡の特徴
マイクロスコープとの大きな違いは、実体顕微鏡は2光路設計になっていることです。
右と左で独立した光路となり、視野も異なります。

例えば下図のようなコインを実体顕微鏡で観察すると

左目の視野と右目の視野が違うことが分かります。
この異なった視野を観察者が一つの映像として観察します。

<メリット>
●対象物が立体的に見える。
●遠近感もわかるので、加工作業をされる方は実体顕微鏡が好適。

<デメリット>
●使う時に少しコツが必要。(初めて使う方は、映像が1つにならず、戸惑うことが多い。)
●高倍率の観察ができない。
●長時間の作業では作業者のストレスが大きい。
●目幅調整、視度調整等、観察者個人ごとの調整が必要。

 

■マイクロスコープの特徴
マイクロスコープは基本的には単眼レンズとなります。

人間が片目で物を視る時と同じで、遠近感がわかりにくいというデメリットがあります。
上図のコインであれば、レンズ中心部では下記のように見えます。

<メリット>
●豊富なレンズから選べるので、低倍率から高倍率(2000倍超えまで)まで対応可能。
●モニタ観察になるので、初めての方も簡単に使用可能。
●疲れにくく、長時間の観察(検査)に好適。
●真上からの観察なので、位置決めや寸法測定にも向いています。
●PCとの親和性もよく、映像の保存・画像処理・焦点合成等、様々なソフトウエアが使用可能。

<デメリット>
●遠近感がわかりにくい

 

更に詳しい情報はこちらをご覧ください。

 

マイクロスコープなんでも辞典

顕微鏡用カメラの接続について

顕微鏡のカメラポートには大きく分けると
「JIS鏡筒」と「Cマウント」の二つがあります。
(メーカー独自のものや海外製のものではこれ以外のタイプもあります。)

JIS鏡筒
(内径23.2mmの直筒)
 
Cマウント
(M25.4mmのオスねじ)
 

 

<JIS鏡筒に取り付ける顕微鏡用カメラ>
カメラ先端に顕微鏡と接続する為のレンズが付いています。
このレンズを交換することで撮影視野(倍率)を変えることができます。
このカメラの最大のメリットは、接眼レンズ部にも接続できることです。

<Cマウントに取り付ける顕微鏡用カメラ>
Cマウントはカメラの規格です。
カメラの規格のため、顕微鏡専用カメラは不要です。
Cマウントタイプの汎用カメラがそのまま接続できることが最大のメリットです。(接眼レンズ部には接続できません。)

 

更に詳しい情報はこちらをご覧ください。

 

 

 

マイクロスコープなんでも辞典

 

マイクロスコープの選び方

マイクロスコープの選び方の基準や方法は色々とあります。
今回は、3つのSTEPに分けて考えてみます。

 

<STEP1>  基本システムの選択
まず、倍率、作動距離、表示速度を考えます。

(1)倍率(視野範囲) 
顕微鏡と異なり、絶対倍率がありません。(参考「マイクロスコープの倍率」)
どのくらいの視野をモニタに映したいかで考えます。
弊社では下記のように分けています。
●低倍率:5倍~50倍程度 (68 x 51mm視野~7.0 x 5.3mm視野 程度)
●中倍率:20倍~140倍程度 (17.5 x 13.2mm視野~2.7 x 2.0mm視野 程度)
●高倍率1:40倍~240倍程度 (9.0 x 6.7mm視野~1.4 x 1.0mm視野 程度)
●高倍率2:80倍~480倍程度 (4.5 x 3.3mm視野~0.7 x 0.5mm視野 程度)
●超高倍率:最大倍率が1000倍を超えるもの

(2)作動距離
レンズ先端から対象物までの距離です。
松電舎のマイクロスコープは基本的にズームレンズのため作動距離は一定です。
使用環境に合わせて必要な距離を考えます。
※倍率が高くなる程、作動距離は短くなるので物理的な限界はあります。

(3)表示速度
検査ラインや加工しながらの観察であれば、ハイビジョンタイプを選択します。
(表示遅れのないスムーズな映像が実現できます。PC不要なのも現場向きです。)

品質管理用途 等であれば、USBタイプを選択します。PCとソフトウェアを利用して様々な付加価値 (距離測定、一時停止、インターバル撮影、撮影した映像の一覧表示、焦点合成)を付けることができます。 
もちろん、映像の保存、保存画像の読み出しが1つのPCでできます。

 

<STEP2>  解像度の選択
解像度は基本システムが決まってから考えます。

ハイビジョンタイプであれば 
1920X1080で決まっています。

USBタイプであれば
300万画素CMOS、500万画素CMOSから選択します。 
USBの場合は、USB2.0かUSB3.0の選択も必要です。
USB3.0はUSB2.0に比べ通信速度が速く
ピント合わせや位置合わせ等の動きに対して有利となります。

 

<STEP3> 照明の選択
松電舎のマイクロスコープの標準付属品は基本リング照明です。
高倍率になると、リング照明と同軸照明からの選択ができます。
その他に、透過照明、ドーム照明、ローアングル(暗視野観察)照明、マルチライティング照明等への変更または追加が可能です。

以上がマイクロスコープの選び方の基本となります。

更に詳しい情報はこちらをご覧ください。

マイクロスコープなんでも辞典

 
 

 

 

 

どのマイクロスコープが御社に最適か簡単にお選びいただけます。

マイクロスコープの倍率について

マイクロスコープの総合倍率は簡単にいうと
1mmの対象物がモニタ上で10mmになっていれば「10倍」です。

総合倍率を計算で算出ができます。
その場合は、光学倍率(レンズの目盛)以外にもカメラの撮像素子サイズ、モニタのインチ数も関わるので少し複雑です。

計算方法は・・・

総合倍率=モニタ倍率×光学倍率(レンズの目盛)

モニタ倍率は下記の式で求めます。

モニタ倍率=(モニタのインチ数×25.4mm)/撮像素子サイズ

*撮像素子サイズは 6mm(1/3インチカメラ)、7mm(1/2.5インチカメラ)、8mm(1/2インチカメラ)とカメラのインチ数によってそれぞれ違います。 

更に詳しい情報はこちらをご覧ください。

マイクロスコープなんでも辞典